If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-240x+900=0
a = 1; b = -240; c = +900;
Δ = b2-4ac
Δ = -2402-4·1·900
Δ = 54000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54000}=\sqrt{3600*15}=\sqrt{3600}*\sqrt{15}=60\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-60\sqrt{15}}{2*1}=\frac{240-60\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+60\sqrt{15}}{2*1}=\frac{240+60\sqrt{15}}{2} $
| 8k+18=31-5k | | 6b-2=14-2b | | 4t+2t+t+t^2= | | x*2-2x-48=0 | | 31+19y=14y+66 | | 76x=-14 | | z/16=4 | | 4p+3.6=10.5+3p | | 28+13x=6x+42 | | 231=65-x | | 30=256b-b^2 | | 4+2p=p+12 | | 2/12=p/8 | | (x+8)^2(x-2)(4x-5)=0 | | 13x=9x+76 | | 2(3^(4x-5))+4=11 | | 2x-9=5x+13 | | 40-x+14=3(x+14) | | -×-4y=-4 | | 2x-3x+18=x | | 520=500(343+x)/343 | | 9x-31=149 | | 2x-3(x-6)=x | | -9w+17=-4(w-8) | | 2(2)+7y=31 | | x+20+2x=-10-2×-15 | | 3(v+8)-8v=-6 | | (-1×10^-8)=0.036^x | | -1E-8=-0.036^x | | 4(7x-16)=3x+10 | | -86+30k=10(3k-7)+2 | | 135-u=249 |